Reducing the Number of Homogeneous Linear Equations in Finding Annihilators

نویسندگان

  • Deepak Kumar Dalai
  • Subhamoy Maitra
چکیده

Given a Boolean function f on n-variables, we find a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators at degree d or not. Using our method the size of the associated matrix becomes νf × ( ∑d

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Immunity of Boolean Functions Analysis and Construction

In this paper, we first analyse the method of finding algebraic immunity of a Boolean function. Given a Boolean function f on n-variables, we identify a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators of f at a specific degree. Moreover, we analyse how an affine transformation on the input variables of f can be exploited to achieve fu...

متن کامل

Towards an Efficient Algorithm to find Annihilators by Solving a Set of Homogeneous Linear Equations

In this paper we study in detail how to design an efficient algorithm for checking whether a Boolean function has an annihilator at a specific degree by solving a set of homogeneous linear equations. The strategy for this purpose is first to form a set of homogeneous linear equations from the truth table of the function (the construction step) and then solve that set of equations (the solution ...

متن کامل

Investigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body

In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...

متن کامل

Polynomial Solutions and Annihilators of Ordinary Integro-Differential Operators ?

In this paper, we study algorithmic aspects of linear ordinary integro-differential operators with polynomial coefficients. Even though this algebra is not noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory. For an algorithmic approach to linear systems theory of integro-differential equations with boundary condi...

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006